An ab initio molecular orbital study of potential energy surface of the NH 2 +NO 2 reaction

A. M. Mebel*, C. C. Hsu, Ming-Chang Lin, K. Morokuma

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


Potential energy surface of the reaction of NH 2 with NO 2 has been studied at the QCISD(T)/6-311G(d,p)//MP2/6-311G(d,p) +ZPC[MP2/6-311G(d,p)] and GAUSSIAN-2 (G2) levels of calculation. The reaction is shown to give three different groups of products. H 2 NO+NO can be produced by two different channels: (i) the barrierless association of the reactants to form H 2 NNO 2 1, followed by the nitro-nitrite rearrangement into H 2 NONO 3 and the ON bond scission and (ii) the association of H 2 N with ONO directly forming 3 without barrier, followed by the dissociation 3. The barrier for the nitro-nitrite rearrangement at the transition state (TS) 2, 31.2 kcal/mol with respect to 1, is 20.8 kcal/mol lower than the reactants at the best G2 level. The TS 2 is found to lie significantly lower and to have much tighter structure than those previously reported. The thermodynamically most stable N 2 O+H 2 O products can be formed from 1 by the complex mechanism (iii), involving 1,3-hydrogen shift from nitrogen to oxygen, rotation of the OH bond, H shift from one oxygen to another and migration of the second H atom from N to O leading to elimination of H 2 O. The rate-determining step is the 1,3-H shift at TS 4 which is 12.5 kcal/mol lower than NH 2 +NO 2 , but 8.3 kcal/mol higher than the barrier for the nitro-nitrite isomerization at TS 2 at the G2 level. N 2 +H 2 O 2 cannot be formed in the reaction, but several channels are shown to produce N 2 +2OH. All of them have as the rate-determining step the second 1,3-hydrogen shift from nitrogen to oxygen at TS 11 or 16, lying by 6.9 kcal/mol higher than NH 2 +NO 2 , and are not expected to compete with the reaction mechanisms producing H 2 NO+NO and N 2 O+H 2 O.

Original languageEnglish
Pages (from-to)5640-5649
Number of pages10
JournalThe Journal of Chemical Physics
Issue number13
StatePublished - 1 Jan 1995


Dive into the research topics of 'An ab initio molecular orbital study of potential energy surface of the NH 2 +NO 2 reaction'. Together they form a unique fingerprint.

Cite this