TY - GEN
T1 - An ab initio investigation of monolayer and bilayer graphene nanoribbon based on different basis sets
AU - Lam, Kai Tak
AU - Liang, Gengchiau
PY - 2008
Y1 - 2008
N2 - We investigated the electronic structure of monolayer and bilayer graphene nanoribbon with armchair edges (AGNRM and AGNRB respectively) based on Density Functional Theory using single-ζ (SZ) and double -ζ (polarized) (DZP) basis sets. We first optimize the atomic structure of an AGNRB and found that DZP is better suited to account for the interlayer Interaction. Next we calculate the energy band diagram of the AGNRM and AGNRB of different width, and study dependence of the band gap (Eg) on the widths. Like AGNRM, AGNR B also shows three different groups in terms of energy bandgap vs. width. In general, AGNRB is found to have a lower Eg than AGNRM. Especially for N=3p+2 family, while it is semiconducting for AGNRM, the Eg of AGNRB is very small and can be considered as metallic at room temperature. Furthermore, we investigate the relationship between Eg and the interlayer distance (D) of AGNR B. From our calculation, Eg is found to be strongly influenced by D and Egincreases as D increases. Finally, comparing solely on Eg we can see that both SZ and DZP calculations provide information on the three trends of the AGNRM and AGNRB, with small differences in the absolute values and hence it may be possible to use SZ for rapid preliminary investigation of the electronic properties of AGNR systems.
AB - We investigated the electronic structure of monolayer and bilayer graphene nanoribbon with armchair edges (AGNRM and AGNRB respectively) based on Density Functional Theory using single-ζ (SZ) and double -ζ (polarized) (DZP) basis sets. We first optimize the atomic structure of an AGNRB and found that DZP is better suited to account for the interlayer Interaction. Next we calculate the energy band diagram of the AGNRM and AGNRB of different width, and study dependence of the band gap (Eg) on the widths. Like AGNRM, AGNR B also shows three different groups in terms of energy bandgap vs. width. In general, AGNRB is found to have a lower Eg than AGNRM. Especially for N=3p+2 family, while it is semiconducting for AGNRM, the Eg of AGNRB is very small and can be considered as metallic at room temperature. Furthermore, we investigate the relationship between Eg and the interlayer distance (D) of AGNR B. From our calculation, Eg is found to be strongly influenced by D and Egincreases as D increases. Finally, comparing solely on Eg we can see that both SZ and DZP calculations provide information on the three trends of the AGNRM and AGNRB, with small differences in the absolute values and hence it may be possible to use SZ for rapid preliminary investigation of the electronic properties of AGNR systems.
UR - http://www.scopus.com/inward/record.url?scp=55349105479&partnerID=8YFLogxK
U2 - 10.1109/NANO.2008.126
DO - 10.1109/NANO.2008.126
M3 - Conference contribution
AN - SCOPUS:55349105479
SN - 9781424421046
T3 - 2008 8th IEEE Conference on Nanotechnology, IEEE-NANO
SP - 409
EP - 411
BT - 2008 8th IEEE Conference on Nanotechnology, IEEE-NANO
T2 - 2008 8th IEEE Conference on Nanotechnology, IEEE-NANO
Y2 - 18 August 2008 through 21 August 2008
ER -