TY - GEN
T1 - Amortized Mixture Prior for Variational Sequence Generation
AU - Chien, Jen-Tzung
AU - Tsai, Chih Jung
N1 - Publisher Copyright:
© 2020 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7
Y1 - 2020/7
N2 - Variational autoencoder (VAE) is a popular latent variable model for data generation. However, in natural language applications, VAE suffers from the posterior collapse in optimization procedure where the model posterior likely collapses to a standard Gaussian prior which disregards latent semantics from sequence data. The recurrent decoder accordingly generates du-plicate or noninformative sequence data. To tackle this issue, this paper adopts the Gaussian mixture prior for latent variable, and simultaneously fulfills the amortized regularization in encoder and skip connection in decoder. The noise robust prior, learned from the amortized encoder, becomes semantically meaningful. The prediction of sequence samples, due to skip connection, becomes contextually precise at each time. The amortized mixture prior (AMP) is then formulated in construction of variational recurrent autoencoder (VRAE) for sequence generation. Experiments on different tasks show that AMP-VRAE can avoid the posterior collapse, learn the meaningful latent features and improve the inference and generation for semantic representation.
AB - Variational autoencoder (VAE) is a popular latent variable model for data generation. However, in natural language applications, VAE suffers from the posterior collapse in optimization procedure where the model posterior likely collapses to a standard Gaussian prior which disregards latent semantics from sequence data. The recurrent decoder accordingly generates du-plicate or noninformative sequence data. To tackle this issue, this paper adopts the Gaussian mixture prior for latent variable, and simultaneously fulfills the amortized regularization in encoder and skip connection in decoder. The noise robust prior, learned from the amortized encoder, becomes semantically meaningful. The prediction of sequence samples, due to skip connection, becomes contextually precise at each time. The amortized mixture prior (AMP) is then formulated in construction of variational recurrent autoencoder (VRAE) for sequence generation. Experiments on different tasks show that AMP-VRAE can avoid the posterior collapse, learn the meaningful latent features and improve the inference and generation for semantic representation.
KW - language model
KW - recurrent neural network
KW - Sequence generation
KW - variational autoencoder
UR - http://www.scopus.com/inward/record.url?scp=85093866306&partnerID=8YFLogxK
U2 - 10.1109/IJCNN48605.2020.9206667
DO - 10.1109/IJCNN48605.2020.9206667
M3 - Conference contribution
AN - SCOPUS:85093866306
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 International Joint Conference on Neural Networks, IJCNN 2020
Y2 - 19 July 2020 through 24 July 2020
ER -