Ameliorating Uniformity and Color Conversion Efficiency in Quantum Dot-Based Micro-LED Displays through Blue–UV Hybrid Structures

Tzu Yi Lee, Wen Chien Miao, Yu Ying Hung, Yi Hong Bai, Pei Tien Chen, Wei Ta Huang, Kuan An Chen, Chien Chung Lin, Fang Chung Chen, Yu Heng Hong*, Hao Chung Kuo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Quantum dot (QD)-based RGB micro light-emitting diode (μ-LED) technology shows immense potential for achieving full-color displays. In this study, we propose a novel structural design that combines blue and quantum well (QW)-intermixing ultraviolet (UV)-hybrid μ-LEDs to achieve high color-conversion efficiency (CCE). For the first time, the impact of various combinations of QD and TiO2 concentrations, as well as thickness variations on photoluminescence efficiency (PLQY), has been systematically examined through simulation. High-efficiency color-conversion layer (CCL) have been successfully fabricated as a result of these simulations, leading to significant savings in time and material costs. By incorporating scattering particles of TiO2 in the CCL, we successfully scatter light and disperse QDs, effectively reducing self-aggregation and greatly improving illumination uniformity. Additionally, this design significantly enhances light absorption within the QD films. To enhance device reliability, we introduce a passivation protection layer using low-temperature atomic layer deposition (ALD) technology on the CCL surface. Moreover, we achieve impressive CCE values of 96.25% and 92.91% for the red and green CCLs, respectively, by integrating a modified distributed Bragg reflector (DBR) to suppress light leakage. Our hybrid structure design, in combination with an optical simulation system, not only facilitates rapid acquisition of optimal parameters for highly uniform and efficient color conversion in μ-LED displays but also expands the color gamut to achieve 128.2% in the National Television Standards Committee (NTSC) space and 95.8% in the Rec. 2020 standard. In essence, this research outlines a promising avenue towards the development of bespoke, high-performance μ-LED displays.

Original languageEnglish
Article number2099
JournalNanomaterials
Volume13
Issue number14
DOIs
StatePublished - Jul 2023

Keywords

  • ALD passivation technology
  • intermixing quantum well
  • micro-LED
  • modified DBR
  • quantum dot color conversion layer

Fingerprint

Dive into the research topics of 'Ameliorating Uniformity and Color Conversion Efficiency in Quantum Dot-Based Micro-LED Displays through Blue–UV Hybrid Structures'. Together they form a unique fingerprint.

Cite this