Abstract
This paper introduces a new data representation and compression technique for precomputed radiance transfer (PRT). The light transfer functions and light sources are modeled with spherical radial basis functions (SRBFs). A SRBF is a rotation-invariant function that depends on the geodesic distance between two points on the unit sphere. Rotating functions in SRBF representation is as straightforward as rotating the centers of SRBFs. Moreover, high-frequency signals are handled by adjusting the bandwidth parameters of SRBFs. To exploit inter-vertex coherence, the light transfer functions are further classified iteratively into disjoint clusters, and tensor approximation is applied within each cluster. Compared with previous methods, the proposed approach enables real-time rendering with comparable quality under high-frequency lighting environments. The data storage is also more compact than previous all-frequency PRT algorithms.
Original language | English |
---|---|
Pages (from-to) | 967-976 |
Number of pages | 10 |
Journal | ACM Transactions on Graphics |
Volume | 25 |
Issue number | 3 |
DOIs | |
State | Published - 1 Jul 2006 |
Event | ACM SIGGRAPH 2006 - Boston, MA, United States Duration: 30 Jul 2006 → 3 Aug 2006 |
Keywords
- Illumination
- Non-linear optimization
- Precomputed Radiance Transfer
- Real-Time Rendering
- Spherical Radial basis functions
- Tensor approximation