@inproceedings{e9644f5505bf4754b24e0ddc832c73c9,
title = "All about structure: Adapting structural information across domains for boosting semantic segmentation",
abstract = "In this paper we tackle the problem of unsupervised domain adaptation for the task of semantic segmentation, where we attempt to transfer the knowledge learned upon synthetic datasets with ground-truth labels to real-world images without any annotation. With the hypothesis that the structural content of images is the most informative and decisive factor to semantic segmentation and can be readily shared across domains, we propose a Domain Invariant Structure Extraction (DISE) framework to disentangle images into domain-invariant structure and domain-specific texture representations, which can further realize image-translation across domains and enable label transfer to improve segmentation performance. Extensive experiments verify the effectiveness of our proposed DISE model and demonstrate its superiority over several state-of-the-art approaches.",
keywords = "Deep Learning, Scene Analysis and Understanding",
author = "Chang, {Wei Lun} and Wang, {Hui Po} and Wen-Hsiao Peng and Wei-Chen Chiu",
year = "2019",
month = jun,
doi = "10.1109/CVPR.2019.00200",
language = "English",
series = "Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition",
publisher = "IEEE Computer Society",
pages = "1900--1909",
booktitle = "Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019",
address = "United States",
note = "32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 ; Conference date: 16-06-2019 Through 20-06-2019",
}