Abstract
Evidence shows that women have lower tumour necrosis factor-α (TNF-α) levels and lower incidences of heart dysfunction and sepsis-related morbidity and mortality. To identify the cardioprotective effects and precise cellular/molecular mechanisms behind estrogen and estrogen receptors (ERs), we investigated the effects of 17β-estradiol (E2) and estrogen receptor α (ERα) on LPS-induced apoptosis by analyzing the activation of survival and death signalling pathways in doxycycline (Dox)-inducible Tet-On/ERα H9c2 myocardial cells and ERα-transfected primary cardiomyocytes overexpressing ERα. We found that LPS challenge activated JNK1/2, and then induced IκB degradation, NFκB activation, TNF-α up-regulation and subsequent myocardial apoptotic responses. In addition, treatments involving E2, membrane-impermeable BSA-E2 and/or Dox, which induces ERα overexpression, significantly inhibited LPS-induced apoptosis by suppressing LPS-up-regulated JNK1/2 activity, IκB degradation, NFκB activation and pro-apoptotic proteins (e.g. TNF-α, active caspases-8, t-Bid, Bax, released cytochrome c, active caspase-9, active caspase-3) in myocardial cells. However, the cardioprotective properties of E2, BSA-E2 and ERα overexpression to inhibit LPS-induced apoptosis and promote cell survival were attenuated by applying LY294002 (PI3K inhibitor) and PI3K siRNA. These findings suggest that E2, BSA-E2 and ERα expression exert their cardioprotective effects by inhibiting JNK1/2-mediated LPS-induced TNF-α expression and cardiomyocyte apoptosis through activation of Akt.
Original language | English |
---|---|
Pages (from-to) | 3655-3667 |
Number of pages | 13 |
Journal | Journal of Cellular and Molecular Medicine |
Volume | 13 |
Issue number | 9 B |
DOIs | |
State | Published - Sep 2009 |
Keywords
- 17β-estradiol
- Estrogen receptor-α
- IκB
- JNK
- Lipopolysacchride
- Myocardial cell apoptosis
- NFκB
- PI3K/Akt