Accelerating the Discovery of Anticancer Peptides through Deep Forest Architecture with Deep Graphical Representation

Lantian Yao, Wenshuo Li, Yuntian Zhang, Junyang Deng, Yuxuan Pang, Yixian Huang, Chia Ru Chung, Jinhan Yu, Ying Chih Chiang*, Tzong Yi Lee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Cancer is one of the leading diseases threatening human life and health worldwide. Peptide-based therapies have attracted much attention in recent years. Therefore, the precise prediction of anticancer peptides (ACPs) is crucial for discovering and designing novel cancer treatments. In this study, we proposed a novel machine learning framework (GRDF) that incorporates deep graphical representation and deep forest architecture for identifying ACPs. Specifically, GRDF extracts graphical features based on the physicochemical properties of peptides and integrates their evolutionary information along with binary profiles for constructing models. Moreover, we employ the deep forest algorithm, which adopts a layer-by-layer cascade architecture similar to deep neural networks, enabling excellent performance on small datasets but without complicated tuning of hyperparameters. The experiment shows GRDF exhibits state-of-the-art performance on two elaborate datasets (Set 1 and Set 2), achieving 77.12% accuracy and 77.54% F1-score on Set 1, as well as 94.10% accuracy and 94.15% F1-score on Set 2, exceeding existing ACP prediction methods. Our models exhibit greater robustness than the baseline algorithms commonly used for other sequence analysis tasks. In addition, GRDF is well-interpretable, enabling researchers to better understand the features of peptide sequences. The promising results demonstrate that GRDF is remarkably effective in identifying ACPs. Therefore, the framework presented in this study could assist researchers in facilitating the discovery of anticancer peptides and contribute to developing novel cancer treatments.

Original languageEnglish
Article number4328
JournalInternational Journal Of Molecular Sciences
Volume24
Issue number5
DOIs
StatePublished - Mar 2023

Keywords

  • anticancer peptide
  • deep forest
  • drug discovery
  • feature extraction
  • sequence analysis

Fingerprint

Dive into the research topics of 'Accelerating the Discovery of Anticancer Peptides through Deep Forest Architecture with Deep Graphical Representation'. Together they form a unique fingerprint.

Cite this