Ab initio molecular orbital study of the O + C6H5O reaction

Ming-Chang Lin*, A. M. Mebel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


An ab initio molecular orbital study of the potential energy surface of the C6H5O + O reaction was performed at the (PUMP3/6‐31G*//UHF/6‐31G*) level of theory. Various reaction channels were considered. The most favorable mechanism, la and Ib, start from the attachment of the oxygen atom to the carbon atom of the C6 ring in the ortho‐ or para position with respect to CO, taking place without activation energy. Then, either hydrogen elimination by mechanism Ia or 1,2‐H shift from the C(H)(O) group takes place; the latter process leads to the formation of the very stable C6H4(O)(OH) radical, which can also eliminate H by mechanism Ib. Thus, the main products of the C6H5O (2B1) + O(3P) reaction are o/p‐benzoquinones and the hydrogen atom. At low temperatures, however, the system may be trapped in the potential well of the C6H4(O)(OH) intermediate. At high temperatures, the reaction may proceed by the formation and decomposition of o/p‐benzoquinones. Because of their higher activation energies, the reaction mechanisms giving rise to other products–the attachment of the oxygen atom to the bridging position to form an epoxy intermediate, followed by insertion of O into the CC bond and dissociation to give C5H5 and CO2 (channel IIc), in addition to the attachment of oxygen to the terminal O atom of C6H5O followed by elimination of O2 (channel III) – cannot compete with channel Ia or Ib. RRKM calculation was carried out for the total and individual rate constants for channels Ia and Ib. The three‐parameter expression for the total rate constant, fitted by the least‐squares method for the temperature range of 300–3000 K, is given as ktot = 5·52×10−17 T1·38 e+148/T cm3 mol−1 s−1.

Original languageEnglish
Pages (from-to)407-420
Number of pages14
JournalJournal of Physical Organic Chemistry
Issue number6
StatePublished - 1 Jan 1995


Dive into the research topics of 'Ab initio molecular orbital study of the O + C6H5O reaction'. Together they form a unique fingerprint.

Cite this