Abstract
The unimolecular decomposition of C6H5OH on its singlet-state potential energy surface has been studied at the G2M//B3LYP/6-311G(d,p) level of theory. The result shows that the most favorable reaction channel involves the isomerization and decomposition of phenol via 2,4-cyclohexadienone and other low-lying isomers prior to the fragmentation process, producing cyclo-C5H6 + CO as major products, supporting the earlier assumption of the important role of the 2,4-cyclohexadienone intermediate. The rate constant predicted by the microcanonical RRKM theory in the temperature range 800-2000 K at 1 Torr -100 atm of Ar pressure for CO production agrees very well with available experimental data in the temperature range studied. The rate constants for the production of CO and the H atom by O-H dissociation at atmospheric Ar pressure can be represented by kCO = 8.62 × 1015 T -0.61 exp(-37 300/T) s-1 and kH = 1.01 × 1071 T-15.92 exp(-62 800/T) s-1. The latter process is strongly P-dependent above 1000 K; its high- and low-pressure limits are given.
Original language | English |
---|---|
Pages (from-to) | 1672-1677 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry A |
Volume | 110 |
Issue number | 4 |
DOIs | |
State | Published - 2 Feb 2006 |