A site-moiety map and virtual screening approach for discovery of novel 5-LOX inhibitors

Kai-Cheng Hsu, Wei-Chun HuangFu, Tony Eight Lin, Min-Wu Chao, Tzu-Ying Sung, Yi-Ying Chen, Shiow-Lin Pan, Jih-Chin Lee, Shey-Cherng Tzou, Chung-Ming Sun, Jinn-Moon Yang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The immune system works in conjunction with inflammation. Excessive inflammation underlies various human diseases, such as asthma, diabetes and heart disease. Previous studies found that 5-lipoxygenase (5-LOX) plays a crucial role in metabolizing arachidonic acid into inflammatory mediators and is a potential therapeutic target. In this study, we performed an in silico approach to establish a site-moiety map (SiMMap) to screen for new 5-LOX inhibitors. The map is composed of several anchors that contain key residues, moiety preferences, and their interaction types (i.e., electrostatic (E), hydrogen-bonding (H), and van der Waals (V) interactions) within the catalytic site. In total, we identified one EH, one H, and five V anchors, within the 5-LOX catalytic site. Based on the SiMMap, three 5-LOX inhibitors (YS1, YS2, and YS3) were identified. An enzyme-based assay validated inhibitory activity of YS1, YS2, and YS3 against 5-LOX with an IC50 value of 2.7, 4.2, and 5.3 mu M, respectively. All three inhibitors significantly decrease LPS-induced TNF-alpha and IL-6 production, which suggests its potential use an anti-inflammatory agent. In addition, the identified 5-LOX inhibitors contain a novel scaffold. The discovery of these inhibitors presents an opportunity for designing specific anti-inflammatory drugs.

Original languageEnglish
Pages (from-to)1-12
Number of pages12
JournalScientific reports
Volume10
Issue number1
DOIs
StatePublished - 29 Jun 2020

Keywords

  • 5-LIPOXYGENASE
  • ZILEUTON
  • CANCER
  • LIPOXYGENASE
  • INFLAMMATION
  • IDENTIFICATION
  • MECHANISMS
  • APOPTOSIS
  • DATABASE
  • DISEASE

Fingerprint

Dive into the research topics of 'A site-moiety map and virtual screening approach for discovery of novel 5-LOX inhibitors'. Together they form a unique fingerprint.

Cite this