A self-adaptive artificial bee colony algorithm with local search for TSK-type neuro-fuzzy system training

Kuang Pen Chou, Chin Teng Lin, Wen Chieh Lin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

In this paper, we introduce a self-adaptive artificial bee colony (ABC) algorithm for learning the parameters of a Takagi-Sugeno-Kang-type (TSK-type) neuro-fuzzy system (NFS). The proposed NFS learns fuzzy rules for the premise part of the fuzzy system using an adaptive clustering method according to the input-output data at hand for establishing the network structure. All the free parameters in the NFS, including the premise and the following TSK-type consequent parameters, are optimized by the modified ABC (MABC) algorithm. Experiments involve two parts, including numerical optimization problems and dynamic system identification problems. In the first part of investigations, the proposed MABC compares to the standard ABC on mathematical optimization problems. In the remaining experiments, the performance of the proposed method is verified with other metaheuristic methods, including differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO) and standard ABC, to evaluate the effectiveness and feasibility of the system. The simulation results show that the proposed method provides better approximation results than those obtained by competitors methods.

Original languageEnglish
Title of host publication2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1502-1509
Number of pages8
ISBN (Electronic)9781728121536
DOIs
StatePublished - Jun 2019
Event2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Wellington, New Zealand
Duration: 10 Jun 201913 Jun 2019

Publication series

Name2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings

Conference

Conference2019 IEEE Congress on Evolutionary Computation, CEC 2019
Country/TerritoryNew Zealand
CityWellington
Period10/06/1913/06/19

Keywords

  • Artificial bee colony (ABC)optimization
  • Evolutionary algorithm (EA)
  • Neuro-fuzzy system (NFS)

Fingerprint

Dive into the research topics of 'A self-adaptive artificial bee colony algorithm with local search for TSK-type neuro-fuzzy system training'. Together they form a unique fingerprint.

Cite this