A QoS optical packet switching system: Architectural design and experimental demonstration

Maria C. Yuang, Yu Min Lin, Ju Lin Shih, Po-Lung Tien, Jyehong Chen, Steven W. Lee, Shih Hsuan Lin

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Optical packet switching has been considered a prominent paradigm for future WDM networks to efficiently support a multitude of applications with diverse quality of service requirements. In this article we present the architectural design and experimental demonstration of a 10 Gb/s QoS optical packet switching system (QOPSS) for WDM networks. It embodies a set of many-to-one space switches, each of which handles the switching solely for a cluster of wavelengths. With the cluster-based optical switch design, QOPSS trades off limited statistical multiplexing gains for higher system scalability. By many-to-one, multiple packets that are carried by different internal wavelengths are scheduled to switch to the same output port but receive different delays afterward. QOPSS adopts downsized feed-forward optical buffers, yielding drastic reduction in packet loss probability in an economical manner. Significantly, through using four-wave-mixing wavelength converters at the output section, QOPSS permits optical packet preemption, thus achieving effectual QoS differentiation. The article presents both simulation and experimental testbed results to demonstrate the feasibility and superior packet loss/QoS performance of the system.

Original languageEnglish
Article number5458365
Pages (from-to)66-75
Number of pages10
JournalIEEE Communications Magazine
Issue number5
StatePublished - 1 May 2010


Dive into the research topics of 'A QoS optical packet switching system: Architectural design and experimental demonstration'. Together they form a unique fingerprint.

Cite this