Abstract
Rechargeable aluminum batteries (RABs) are extensively developed due to their cost-effectiveness, eco-friendliness, and low flammability and the earth abundance of their electrode materials. However, the commonly used RAB ionic liquid (IL) electrolyte is highly moisture-sensitive and corrosive. To address these problems, a 4-ethylpyridine/AlCl3 IL is proposed. The effects of the AlCl3 to 4-ethylpyridine molar ratio on the electrode charge–discharge properties are systematically examined. A maximum graphite capacity of 95 mAh g−1 is obtained at 25 mA g−1. After 1000 charge–discharge cycles, ≈85% of the initial capacity can be retained. In situ synchrotron X-ray diffraction is employed to examine the electrode reaction mechanism. In addition, low corrosion rates of Al, Cu, Ni, and carbon-fiber paper electrodes are confirmed in the 4-ethylpyridine/AlCl3 IL. When opened to the ambient atmosphere, the measured capacity of the graphite cathode is only slightly lower than that found in a N2-filled glove box; moreover, the capacity retention upon 100 cycles is as high as 75%. The results clearly indicate the great potential of this electrolyte for practical RAB applications.
Original language | English |
---|---|
Article number | 1909565 |
Journal | Advanced Functional Materials |
Volume | 30 |
Issue number | 12 |
DOIs | |
State | Published - 17 Mar 2020 |
Keywords
- Al/graphite cells
- air-stable
- corrosion
- electrolyte design
- in situ X-ray diffraction