A highly efficient and adaptive solar-energy harvesting circuit for batteryless IoT devices

Ching Cheng Yang, Paul C.-P. Chao*, Rajeev Kumar Pandey

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper a new on-chip 2nd generation solar energy harvesting DC-DC converter has been proposed for a battery-less Internet of Things (IoTs) Devices. The propose circuit is design to maximize the transfer efficiency and stability as well as enough high power supply to the back-end loads. Altogether the proposed circuit consists of a cross-coupled charge pump, a maximum power point tracking (MPPT) circuit, a timing control circuit and regulator. The range of input voltage is from 0.5V to 3V. Required boosted output voltage is in the range of 1V to 3.3V. The maximum transfer efficiency is more than 60% and the maximum throughout power is 200μW. A gated clock frequency modulation circuit has been designed and employed in the maximum power point tracking (MPPT) unit to lock the input resistance of the charge pump. In addition, to provide a stable voltage to the load a low dropout (LDO) regulator circuit is used. The experimental results show that the maximum power conversion efficiency (PCE) is 78% at 52μW input power condition.

Original languageEnglish
Title of host publicationASME-JSME 2018 Joint International Conference on Information Storage and Processing Systems and Micromechatronics for Information and Precision Equipment, ISPS-MIPE 2018
PublisherAmerican Society of Mechanical Engineers (ASME)
Number of pages4
ISBN (Electronic)9780791851937
DOIs
StatePublished - 2018
EventASME-JSME 2018 Joint International Conference on Information Storage and Processing Systems and Micromechatronics for Information and Precision Equipment, ISPS-MIPE 2018 - San Francisco, United States
Duration: 29 Aug 201830 Aug 2018

Publication series

NameASME-JSME 2018 Joint International Conference on Information Storage and Processing Systems and Micromechatronics for Information and Precision Equipment, ISPS-MIPE 2018

Conference

ConferenceASME-JSME 2018 Joint International Conference on Information Storage and Processing Systems and Micromechatronics for Information and Precision Equipment, ISPS-MIPE 2018
Country/TerritoryUnited States
CitySan Francisco
Period29/08/1830/08/18

Fingerprint

Dive into the research topics of 'A highly efficient and adaptive solar-energy harvesting circuit for batteryless IoT devices'. Together they form a unique fingerprint.

Cite this