TY - GEN
T1 - A hierarchical social network-based P2P SIP system for mobile environments
AU - Li, Bo Wei
AU - Wang, Kuo-Chen
AU - Hsieh, Yi Ling
PY - 2010/12/1
Y1 - 2010/12/1
N2 - P2P SIP (peer to peer session initiation protocol) systems have emerged as a new trend in multimedia realm due to their abilities to overcome the shortcomings of conventional SIP systems. Most of P2P SIP systems were implemented using Chord, a Distributed Hash Table (DHT) based routing algorithm which can provide scalability and reliability. Previous studies on P2P SIP systems did not address node heterogeneity, location information and mobility issues all together. For node heterogeneity, nodes with different capabilities (processing power, storage and bandwidth) should be treated suitably. For location information, the signaling latency is correlated with the distance between end users. This will influence call setup latency greatly. As to mobility, the node churn property will involve additional messages to maintain a stable DHT-based network and increases call setup latency. To conquer these problems, we propose a hierarchical social network-based P2P SIP system. The social network property can increase routing efficiency when calling friends. In addition, the proposed hybrid (structured/unstructured) overlay is more resilient to cope with node churn. Simulation results show that our approach can improve 32% call setup latency with non-buddies and reduce 63% maintenance cost in comparison with the conventional Chord-based approach. In addition, we improve lookup efficiency from O(logN) to O(1) when making calls with buddies, where N is the number of nodes in a DHT-based network.
AB - P2P SIP (peer to peer session initiation protocol) systems have emerged as a new trend in multimedia realm due to their abilities to overcome the shortcomings of conventional SIP systems. Most of P2P SIP systems were implemented using Chord, a Distributed Hash Table (DHT) based routing algorithm which can provide scalability and reliability. Previous studies on P2P SIP systems did not address node heterogeneity, location information and mobility issues all together. For node heterogeneity, nodes with different capabilities (processing power, storage and bandwidth) should be treated suitably. For location information, the signaling latency is correlated with the distance between end users. This will influence call setup latency greatly. As to mobility, the node churn property will involve additional messages to maintain a stable DHT-based network and increases call setup latency. To conquer these problems, we propose a hierarchical social network-based P2P SIP system. The social network property can increase routing efficiency when calling friends. In addition, the proposed hybrid (structured/unstructured) overlay is more resilient to cope with node churn. Simulation results show that our approach can improve 32% call setup latency with non-buddies and reduce 63% maintenance cost in comparison with the conventional Chord-based approach. In addition, we improve lookup efficiency from O(logN) to O(1) when making calls with buddies, where N is the number of nodes in a DHT-based network.
KW - Call setup latency
KW - Mobile environment
KW - P2P SIP
KW - Social network
UR - http://www.scopus.com/inward/record.url?scp=78751541475&partnerID=8YFLogxK
U2 - 10.1109/PIMRC.2010.5671772
DO - 10.1109/PIMRC.2010.5671772
M3 - Conference contribution
AN - SCOPUS:78751541475
SN - 9781424480166
T3 - IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
SP - 2581
EP - 2585
BT - 2010 IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications, PIMRC 2010
T2 - 2010 IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications, PIMRC 2010
Y2 - 26 September 2010 through 30 September 2010
ER -