Abstract
In this paper, a general structure of linear-phase finite impulse response filters, whose frequency responses satisfy given derivative constraints imposed upon an arbitrary frequency, is proposed. It is comprised of a linear combination of parallelly connected subfilters, called the cardinal filters, with weighted coefficients being the successive derivatives of the desired frequency response at the constrained frequency. An advantage of such a cardinal filters design is that only the weighted coefficients are relevant to the desired frequency response but not the cardinal filters; hence, a dynamic adjustment of the filter system becomes feasible. The key to derive the coefficients of cardinal filters is the determination of the power series expansion of certain trigonometric-related functions. By showing the elaborately chosen trigonometric-related functions satisfy specific differential equations, recursive formulas for the coefficients of cardinal filters are subsequently established, which make efficient their computations. At last, a simple enhancement of the cardinal filters design by incorporating the mean square error minimization is presented through examples.
Original language | English |
---|---|
Article number | 7865939 |
Pages (from-to) | 1839-1852 |
Number of pages | 14 |
Journal | IEEE Transactions on Circuits and Systems I: Regular Papers |
Volume | 64 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2017 |
Keywords
- Finite impulse response (FIR) filters
- linear phase filters
- maximally flat (MF) filters
- Taylor interpolation
- CLOSED-FORM DESIGN
- FLAT
- DIFFERENTIATORS