A dominant negative Kcnd3 F227del mutation in mice causes spinocerebellar ataxia type 22 (SCA22) by impairing ER and Golgi functioning

Hao Chih Hung, Jia Han Lin, Yuan Chi Teng, Cheng Heng Kao, Pei Yu Wang, Bing Wen Soong, Ting Fen Tsai*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Spinocerebellar ataxia type 22 (SCA22) caused by KCND3 mutations is an autosomal dominant disorder. We established a mouse model carrying the Kcnd3 F227del mutation to study the molecular pathogenesis. Four findings were pinpointed. First, the heterozygous mice exhibited an early onset of defects in motor coordination and balance which mirror those of SCA22 patients. The degeneration and a minor loss of Purkinje cells, together with the concurrent presence of neuroinflammation, as well as the previous finding on electrophysiological changes, may all contribute to the development of the SCA22 ataxia phenotype in mice carrying the Kcnd3 F227del mutant protein. Second, the mutant protein is retained by the endoplasmic reticulum and Golgi, leading to activation of the unfolded protein response and a severe trafficking defect that affects its membrane destination. Intriguingly, profound damage of the Golgi is the earliest manifestation. Third, analysis of the transcriptome revealed that the Kcnd3 F227del mutation down-regulates a panel of genes involved in the functioning of synapses and neurogenesis which are tightly linked to the functioning of Purkinje cells. Finally, no ataxia phenotypes were detectable in knockout mice carrying a loss-of-function Kcnd3 mutation. Thus, Kcnd3 F227del is a dominant-negative mutation. This mouse model may serve as a preclinical model for exploring therapeutic strategies to treat patients.

Original languageEnglish
Pages (from-to)57-68
Number of pages12
JournalJournal of Pathology
Volume265
Issue number1
DOIs
StatePublished - Jan 2025

Keywords

  • dominant negative mutation
  • endoplasmic reticulum and Golgi
  • KCND3
  • Purkinje cells
  • spinocerebellar ataxia type 22
  • trafficking defect

Fingerprint

Dive into the research topics of 'A dominant negative Kcnd3 F227del mutation in mice causes spinocerebellar ataxia type 22 (SCA22) by impairing ER and Golgi functioning'. Together they form a unique fingerprint.

Cite this