TY - JOUR
T1 - A deep-learning model with task-specific bounding box regressors and conditional back-propagation for moving object detection in adas applications
AU - Lin, Guan Ting
AU - Shivanna, Vinay Malligere
AU - Guo, Jiun In
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/9/2
Y1 - 2020/9/2
N2 - This paper proposes a deep-learning model with task-specific bounding box regressors (TSBBRs) and conditional back-propagation mechanisms for detection of objects in motion for advanced driver assistance system (ADAS) applications. The proposed model separates the object detection networks for objects of different sizes and applies the proposed algorithm to achieve better detection results for both larger and tinier objects. For larger objects, a neural network with a larger visual receptive field is used to acquire information from larger areas. For the detection of tinier objects, the network of a smaller receptive field utilizes fine grain features. A conditional back-propagation mechanism yields different types of TSBBRs to perform data-driven learning for the set criterion and learn the representation of different object sizes without degrading each other. The design of dual-path object bounding box regressors can simultaneously detect objects in various kinds of dissimilar scales and aspect ratios. Only a single inference of neural network is needed for each frame to support the detection of multiple types of object, such as bicycles, motorbikes, cars, buses, trucks, and pedestrians, and to locate their exact positions. The proposed model was developed and implemented on different NVIDIA devices such as 1080 Ti, DRIVE-PX2 and Jetson TX-2 with the respective processing performance of 67 frames per second (fps), 19.4 fps, and 8.9 fps for the video input of 448 × 448 resolution, respectively. The proposed model can detect objects as small as 13 × 13 pixels and achieves 86.54% accuracy on a publicly available Pascal Visual Object Class (VOC) car database and 82.4% mean average precision (mAP) on a large collection of common road real scenes database (iVS database).
AB - This paper proposes a deep-learning model with task-specific bounding box regressors (TSBBRs) and conditional back-propagation mechanisms for detection of objects in motion for advanced driver assistance system (ADAS) applications. The proposed model separates the object detection networks for objects of different sizes and applies the proposed algorithm to achieve better detection results for both larger and tinier objects. For larger objects, a neural network with a larger visual receptive field is used to acquire information from larger areas. For the detection of tinier objects, the network of a smaller receptive field utilizes fine grain features. A conditional back-propagation mechanism yields different types of TSBBRs to perform data-driven learning for the set criterion and learn the representation of different object sizes without degrading each other. The design of dual-path object bounding box regressors can simultaneously detect objects in various kinds of dissimilar scales and aspect ratios. Only a single inference of neural network is needed for each frame to support the detection of multiple types of object, such as bicycles, motorbikes, cars, buses, trucks, and pedestrians, and to locate their exact positions. The proposed model was developed and implemented on different NVIDIA devices such as 1080 Ti, DRIVE-PX2 and Jetson TX-2 with the respective processing performance of 67 frames per second (fps), 19.4 fps, and 8.9 fps for the video input of 448 × 448 resolution, respectively. The proposed model can detect objects as small as 13 × 13 pixels and achieves 86.54% accuracy on a publicly available Pascal Visual Object Class (VOC) car database and 82.4% mean average precision (mAP) on a large collection of common road real scenes database (iVS database).
KW - Conditional back propagation
KW - Convolutional neural network
KW - Road objects detection
UR - http://www.scopus.com/inward/record.url?scp=85090887164&partnerID=8YFLogxK
U2 - 10.3390/s20185269
DO - 10.3390/s20185269
M3 - Article
C2 - 32942628
AN - SCOPUS:85090887164
SN - 1424-8220
VL - 20
SP - 1
EP - 21
JO - Sensors (Switzerland)
JF - Sensors (Switzerland)
IS - 18
M1 - 5269
ER -