A chopper-embedded bgr composite noise reduction circuit for clock generator

Neeru Agarwal*, Neeraj Agarwal, Chih Wen Lu, Masahito Oh-E

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A chopper-embedded bandgap reference (BGR) scheme is presented using 0.18 µm CMOS technology for low-frequency noise suppression in the clock generator application. As biasing circuitry produce significant flicker noise, along with thermal noise from passive components, the proposed low-noise chopper-stabilized BGR circuit was designed and implemented for wide temperature range of −40 to 125C, including a startup and self-biasing circuit to reduce critical low-frequency noise from the bias circuitry and op amp input offset voltage. The BGR circuit generated a reference voltage of 1.25 V for a supply voltage range of 2.5–3.3 V. The gain of the implemented BGR operational transconductance amplifier is 84.1 dB. A non-overlapping clock circuit was implemented to reduce the clock skew effect, which is also one of the noise contributors. The noise analysis of a chopped bandgap voltage reference was evaluated through cadence periodic steady-state (PSS) analysis and periodic noise (PNoise) analysis. The low-frequency flicker noise was reduced from 1.5 to 0.4 µV/sqrt(Hz) at 1 KHz, with the proposed chopping scheme in the bandgap. Comparisons of the noise performance of the chopper-embedded BGR, with and without a low-pass filter, were also performed, and the results show a further reduction in the overall noise. A reduction in the flicker noise, from 181.3 to 10.26 mV/sqrt(Hz) at 100 KHz, was observed with the filter. All circuit blocks of the proposed BGR scheme were designed and simulated using the EDA tool HSPICE, and layout generation was carried out by Laker. The BGR architecture layout dimensions are 285.25 µm × 125.38 µm.

Original languageEnglish
Article number2257
JournalElectronics (Switzerland)
Volume10
Issue number18
DOIs
StatePublished - Sep 2021

Keywords

  • Bandgap reference (BGR)
  • Chopper circuit
  • Flicker noise
  • Temp variation

Fingerprint

Dive into the research topics of 'A chopper-embedded bgr composite noise reduction circuit for clock generator'. Together they form a unique fingerprint.

Cite this