TY - GEN
T1 - A blind statistical approach for optimal receive beam steering in multipath environments
AU - Tsai, Tsung Yu
AU - Ko, Ta
AU - Lin, You Hsien
AU - Tsai, Zsehong
AU - Hsu, Terng-Yin
PY - 2012
Y1 - 2012
N2 - A novel blind statistical algorithm for obtaining the optimal receive beam vector with maximum time-domain effective SNR in OFDMA systems under multipath environment is proposed. The basic procedure of the proposed approach is obtained via the coarse cyclic prefix (CP) detection first and the sample average of the correlation matrices is calculated from selected signal samples for later singular value decomposition (SVD) on the averaged correlation matrix. The proposed approach has the following advantages: First, it is accurate even in the presence of high noise power and when the process of the OFDMA sampled signals are not white (i.e. not all subcarriers are allocated for data transmission). Secondly, it can be operated in time-domain with no training signals and no pre-assumption of the antenna array structure. Hence, it could be applied directly to a variety of existing OFDMA systems and its design can be made relatively simple for implementation. Theoretical proofs of its optimality and the guarantee of convergence are also provided in this paper. Finally, simulation results verifies the theoretical analysis and shows that the proposed approach can accurately achieve a near optimal SNR gain even in low SNR environment and has a convergence speed within two OFDM symbols.
AB - A novel blind statistical algorithm for obtaining the optimal receive beam vector with maximum time-domain effective SNR in OFDMA systems under multipath environment is proposed. The basic procedure of the proposed approach is obtained via the coarse cyclic prefix (CP) detection first and the sample average of the correlation matrices is calculated from selected signal samples for later singular value decomposition (SVD) on the averaged correlation matrix. The proposed approach has the following advantages: First, it is accurate even in the presence of high noise power and when the process of the OFDMA sampled signals are not white (i.e. not all subcarriers are allocated for data transmission). Secondly, it can be operated in time-domain with no training signals and no pre-assumption of the antenna array structure. Hence, it could be applied directly to a variety of existing OFDMA systems and its design can be made relatively simple for implementation. Theoretical proofs of its optimality and the guarantee of convergence are also provided in this paper. Finally, simulation results verifies the theoretical analysis and shows that the proposed approach can accurately achieve a near optimal SNR gain even in low SNR environment and has a convergence speed within two OFDM symbols.
UR - http://www.scopus.com/inward/record.url?scp=84871961145&partnerID=8YFLogxK
U2 - 10.1109/PIMRC.2012.6362695
DO - 10.1109/PIMRC.2012.6362695
M3 - Conference contribution
AN - SCOPUS:84871961145
SN - 9781467325691
T3 - IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
SP - 2067
EP - 2072
BT - 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2012
T2 - 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2012
Y2 - 9 September 2012 through 12 September 2012
ER -