A 935&#x2013;953-MHz <inline-formula> <tex-math notation="LaTeX">$Q$</tex-math> </inline-formula>-Enhanced CMOS Tunable Bandpass Filter With Ultra-Narrowband and Ultralow Power for RFID Applications

Yaru Hou, Kun Li, Bin Liu, Tiantian Zeng, Yuanan Liu, Pei Ling Chi, Tao Yang

Research output: Contribution to journalArticlepeer-review

Abstract

A <inline-formula> <tex-math notation="LaTeX">$Q$</tex-math> </inline-formula>-enhanced CMOS tunable bandpass filter (BPF) with ultra-narrow bandwidth and ultralow dc power consumption for radio frequency identification (RFID) devices is proposed using 55-nm bulk CMOS technology in this article. The proposed filter is constructed by a capacitively coupled <italic>LC</italic> resonator (<italic>LCC</italic>), which consists of a 16-nH on-chip integrated inductor, fixed capacitors, and tunable varactors. nMOS cross-coupled transistors are used to compensate for the loss of the resonator and improve the loaded <inline-formula> <tex-math notation="LaTeX">$Q$</tex-math> </inline-formula> of the resonator. To achieve low power consumption, an inductor with an ultralarge value is exploited to reduce the loss of the resonator. Besides, an improved dual varactor inverse (DVI) and degenerated resistors at the source of the cross-coupled transistors with linearity and resistance adjusting, respectively, are utilized to optimize the linearity under center frequency tuning. Besides, the active circuits, the fixed capacitance, and varactors are placed inside the inductor to improve the integration. With all the proposed techniques, the presented BPF achieves a 935&#x2013;953-MHz center frequency tuning range with a constant narrow bandwidth of 180 kHz, a low power consumption of 85 <inline-formula> <tex-math notation="LaTeX">$\mu$</tex-math> </inline-formula>W, and a core area of 0.43 <inline-formula> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula> 0.43 mm<inline-formula> <tex-math notation="LaTeX">$^{2}$</tex-math> </inline-formula>, demonstrating a high-performance tunable on-chip filter using bulk CMOS technology for low-power and narrowband Internet of Things (NBIoT) applications.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalIEEE Transactions on Microwave Theory and Techniques
DOIs
StateAccepted/In press - 2024

Keywords

  • <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX">$Q$</tex-math> </inline-formula>-enhanced filter
  • Band-pass filters
  • Bandwidth
  • Capacitance
  • Filtering theory
  • Linearity optimization
  • low power
  • Microwave filters
  • on-chip bandpass filter (BPF)
  • Resonator filters
  • System-on-chip
  • ultra-narrowband

Fingerprint

Dive into the research topics of 'A 935&#x2013;953-MHz <inline-formula> <tex-math notation="LaTeX">$Q$</tex-math> </inline-formula>-Enhanced CMOS Tunable Bandpass Filter With Ultra-Narrowband and Ultralow Power for RFID Applications'. Together they form a unique fingerprint.

Cite this