3D Gait Tracking by Acoustic Doppler Effects

Ting Hui Chiang, Yi Juan Su, Huan Ruei Shiu, Yu Chee Tseng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Rehabilitation and physical therapies can recover people suffering from neurological disorder. Due to limited medical personnels, there are not enough medical personnels help patients with their posture diagnosis. In this paper, we propose a 3D gait tracking method to help medical personnels monitor patients. Based on acoustic signals, our approach derives displacement by only one integration of velocity. When one walks, his feet move back and forth, causing relative movements to our acoustic sensors, which we call self-Doppler effect. We utilize three buzzers and one microphone mounted on feet to collect the frequency shifts caused by relative movements and measure 3D trajectories. We validate through simulations that this approach would perform very well. In real experiments, due to the existence of noise and the limitation of hardware, we observe an average error of 0.1669 m in step length estimation and 0.0867 m in step height estimation.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3146-3149
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: 20 Jul 202024 Jul 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period20/07/2024/07/20

Fingerprint

Dive into the research topics of '3D Gait Tracking by Acoustic Doppler Effects'. Together they form a unique fingerprint.

Cite this